線性代數(shù)是考研數(shù)學中比較容易拿分的部分,也是很多考生在復習過程中最容易忽視的,但是,從歷年線性代數(shù)這一塊的得分情況來看,并不是很理想!那么,問題出在哪里呢?其中一部分原因是考生對線性代數(shù)本身知識點的特點缺乏正確的認識。下面呢,我們就具體從這個角度來闡述線性代數(shù)的特點,并給出相應的復習建議。
作者
佚名
線性代數(shù)是考研數(shù)學中比較容易拿分的部分,也是很多考生在復習過程中最容易忽視的,但是,從歷年線性代數(shù)這一塊的得分情況來看,并不是很理想!那么,問題出在哪里呢?其中一部分原因是考生對線性代數(shù)本身知識點的特點缺乏正確的認識。下面呢,我們就具體從這個角度來闡述線性代數(shù)的特點,并給出相應的復習建議。
首先,回顧一下線性代數(shù)的主要構成有哪些,它由六大塊知識點構成:行列式、矩陣、向量、線性方程組、特征值特征向量、二次型。
第一,概念較為抽象
這是復習之初,考生們面臨的第一道坎。就比如說,矩陣秩的概念,矩陣非零子式的最高階數(shù),這是一個嵌套的定義,想要理解這個概念,我們需要把握住什么叫做子式。其次,還要做到會求矩陣的秩,對于具體的矩陣,我們能夠根據(jù)定義求出來,但在考試中更側重于抽象矩陣秩的求法,這使得很多考生無從下手,原因在于秩的概念根本沒有把握住。因此,在早期的復習,希望大家一定要做到把握住線性代數(shù)中一些較為抽象的核心概念,除了上述提到的秩的概念之外,另外極大線性無關組、基礎解系等概念也是考試中非常重要的考點。
第二,概念多,性質多,定理多
例如有關矩陣的,就有相似矩陣、合同矩陣、正定矩陣、正交矩陣、伴隨矩陣等.在向量這部分,向量組線性相關的性質就10來個。知識點的瑣碎就在無形之中增加了各位考生的記憶壓力,所以大家的復習的過程中要留意這一點。
第三,知識點聯(lián)系緊密,對知識點的考察偏向綜合性
就拿上面講到的秩這個概念,對于具體的矩陣求秩,我們通常是對矩陣作初等行變換化階梯型,根據(jù)階梯型中非零行的個數(shù)來求;對于抽象的,一方面可以利用定義來判定,另外如果與向量結合,還可以由向量的相關性及向量組的秩來判定,如果與線性方程組結合,由基礎解系所含向量的個數(shù)也可以幫助判定,還可以借助矩陣(方針)的非零特征值個數(shù)等方法來判定。由此,我們就可以看到除了掌握秩本身的概念,另外一個重要的方面就是知識點間的聯(lián)系一定要掌握,這是學好線代的關鍵之一。那么,考生在復習整個線性代數(shù)時,要不斷的歸納總結,找出它們之間的聯(lián)系,解決考點綜合性的這個問題。
第四,計算量大
線性代數(shù)的另外一個比較明顯的特點就是計算量較大,這里通常是體現(xiàn)在解答題當中,對于選擇題和填空題這種小題來說,計算量一般適中,如果同學們發(fā)現(xiàn)在做題的過程中,在小題的時間花費比較大,那極有可能是同學們的解題思路出了問題。這里,我們主要談解答題中計算量較大的題型,計算量比較大的主要有兩種題型:一是,線性方程組以及與線性方程組之間有密切聯(lián)系的向量的考察,二是,相似對角化,這兩塊的計算量是最大的,尤其是后者,通常是先求特征值,緊跟著求特征向量,有可能還需要求可相似對角化的正交矩陣。雖然只是簡單的運算,但是運算次數(shù)較多的話,就很容易犯錯,這是考生在考試中失分的又一重要因素!
第五,推理證明
線性代數(shù)還會考察學生的推理論證能力,但是從實際的得分可以看出很多考生這方面的能力較為欠缺,特別是處理應用題和證明題的能力。這方面的能力需要同學們自己去總結??碱}型以及相應的解題思路和方法,有意識的來鍛煉自己這方面的能力,避免在考試中失分。
根據(jù)上述考研數(shù)學線性代數(shù)的特點,考生們可以在復習的過程中根據(jù)自己的實際情況進行調(diào)整。
關于"最后階段,真題的正確打開方式_備考經(jīng)驗_考研幫"有15名研友在考研幫APP發(fā)表了觀點
掃我下載考研幫
最新資料下載
2021考研熱門話題進入論壇
考研幫地方站更多
你可能會關心:
來考研幫提升效率