考研幫 > 數(shù)學(xué) > 復(fù)習(xí)經(jīng)驗(yàn)

考研數(shù)學(xué)知識點(diǎn):定與不定積分

  【摘要】考研沖刺階段,考研人目前最敏感的就是知識點(diǎn)了,雖然大家的復(fù)習(xí)將近尾聲,但是,這個(gè)重要的知識點(diǎn)我必須要與大家分享!考研不足100天,專業(yè)課如何提升一個(gè)level ?了解更多猛戳

  
 

  
  
  ?不定積分
  1、原函數(shù)存在定理
  ●定理如果函數(shù)f(x)在區(qū)間I上連續(xù),那么在區(qū)間I上存在可導(dǎo)函數(shù)F(x),使對任一x∈I都有F’(x)=f(x);簡單的說連續(xù)函數(shù)一定有原函數(shù)。
  ●分部積分法
  如果被積函數(shù)是冪函數(shù)和正余弦或冪函數(shù)和指數(shù)函數(shù)的乘積,就可以考慮用分部積分法,并設(shè)冪函數(shù)和指數(shù)函數(shù)為u,這樣用一次分部積分法就可以使冪函數(shù)的冪降低一次。如果被積函數(shù)是冪函數(shù)和對數(shù)函數(shù)或冪函數(shù)和反三角函數(shù)的乘積,就可設(shè)對數(shù)和反三角函數(shù)為u。

  2、對于初等函數(shù)來說,在其定義區(qū)間上,它的原函數(shù)一定存在,但原函數(shù)不一定都是初等函數(shù)。

  ?定積分
  1、定積分解決的典型問題
 ?。?)曲邊梯形的面積(2)變速直線運(yùn)動(dòng)的路程

  2、函數(shù)可積的充分條件
  ●定理設(shè)f(x)在區(qū)間[a,b]上連續(xù),則f(x)在區(qū)間[a,b]上可積,即連續(xù)=>可積。
  ●定理設(shè)f(x)在區(qū)間[a,b]上有界,且只有有限個(gè)間斷點(diǎn),則f(x)在區(qū)間[a,b]上可積。

  3、定積分的若干重要性質(zhì)
  ●性質(zhì)如果在區(qū)間[a,b]上f(x)≥0則∫abf(x)dx≥0。
  ●推論如果在區(qū)間[a,b]上f(x)≤g(x)則∫abf(x)dx≤∫abg(x)dx。
  ●推論|∫abf(x)dx|≤∫ab|f(x)|dx。
  ●性質(zhì)設(shè)M及m分別是函數(shù)f(x)在區(qū)間[a,b]上的最大值和最小值,則m(b-a)≤∫abf(x)dx≤M(b-a),該性質(zhì)說明由被積函數(shù)在積分區(qū)間上的最大值及最小值可以估計(jì)積分值的大致范圍。
  ●性質(zhì)(定積分中值定理)如果函數(shù)f(x)在區(qū)間[a,b]上連續(xù),則在積分區(qū)間[a,b]上至少存在一個(gè)點(diǎn)ξ,使下式成立:∫abf(x)dx=f(ξ)(b-a)。

  4、關(guān)于廣義積分
  設(shè)函數(shù)f(x)在區(qū)間[a,b]上除點(diǎn)c(a<c<b)外連續(xù),而在點(diǎn)c的鄰域內(nèi)無界,如果兩個(gè)廣義積分∫acf(x)dx與∫cbf(x)dx都收斂,則定義∫abf(x)dx=∫acf(x)dx+∫cbf(x)dx,否則(只要其中一個(gè)發(fā)散)就稱廣義積分∫abf(x)dx發(fā)散。

  ?定積分的應(yīng)用
  1、求平面圖形的面積(曲線圍成的面積)
  ●直角坐標(biāo)系下(含參數(shù)與不含參數(shù))
  ●極坐標(biāo)系下(r,θ,x=rcosθ,y=rsinθ)(扇形面積公式S=R2θ/2)
  ●旋轉(zhuǎn)體體積(由連續(xù)曲線、直線及坐標(biāo)軸所圍成的面積繞坐標(biāo)軸旋轉(zhuǎn)而成)(且體積V=∫abπ[f(x)]2dx,其中f(x)指曲線的方程)
  ●平行截面面積為已知的立體體積(V=∫abA(x)dx,其中A(x)為截面面積)
  ●功、水壓力、引力
  ●函數(shù)的平均值(平均值y=1/(b-a)*∫abf(x)dx)

  (實(shí)習(xí)編輯:孫慧敏)

關(guān)于"最后階段,真題的正確打開方式_備考經(jīng)驗(yàn)_考研幫"15名研友在考研幫APP發(fā)表了觀點(diǎn)

掃我下載考研幫

考研幫地方站更多

你可能會(huì)關(guān)心:

來考研幫提升效率

× 關(guān)閉