自從新大綱發(fā)布之后,網(wǎng)上有不少大綱解析文章。當然,關(guān)于考研后期復(fù)習及復(fù)習策略,才是同學們最關(guān)注的。選哪些資料,現(xiàn)階段看幾遍書,做題效
作者
佚名
14.線性代數(shù)向量那部分的定理比較抽象,一定要會證明嗎?
劉老師:向量部分有兩大部分內(nèi)容需要重點把握:一部分是向量的兩個核心概念“線性相關(guān)”和“線性表出”與線性方程組的關(guān)系;另一部分是向量自身有一些定理,需要把握。
前一部分對處理數(shù)值型向量組的“線性相關(guān)”和“線性表出”問題很有效——處理“線性相關(guān)”問題轉(zhuǎn)化為齊次線性方程組有非零解的問題;處理“線性表出”問題轉(zhuǎn)化為非齊次線性方程組的解的存在性問題。
后一部分對考生的邏輯思維能力要求較高。定理內(nèi)容要熟悉,大部分的定理要會證明。如“n(n>=2)個向量構(gòu)成的向量組線性相關(guān)的充要條件是存在一個向量能由其余向量線性表出”,該定理有助于理解“線性相關(guān)”這個概念的含義,另外該定理的證明過程中包含著證明一個向量由一個向量組線性表出的思路:找一個包含這個向量和向量組的等式,說明該向量的系數(shù)不為0即可。
15.線代既靈活又抽象,怎么把握呢?
劉老師:我問過不少考生這個問題:線性代數(shù)的知識結(jié)構(gòu)是樹形結(jié)構(gòu)還是網(wǎng)狀結(jié)構(gòu)?不少同學回答網(wǎng)狀結(jié)構(gòu)??忌紫葢?yīng)該把考綱規(guī)定的每個考點掌握好,接下來完成“歸納題型,總結(jié)方法”的任務(wù)(可以自己把參考資料總結(jié)的方法消化吸收,也可以把老師講的方法消化吸收),接下來就是形成體系和強化重難點了。
如何形成體系呢?用核心的概念把相關(guān)的知識串起來是個不錯的方法。比如n階矩陣A可逆有多少等價條件?從行列式的角度是A的行列式不等于0,從向量的角度是A的列向量組或行向量組線性無關(guān),從線性方程組的角度是Ax=0僅有零解或Ax=b有唯一解,從秩的角度是r(A)=n,從特征值的角度是A的特征值不含0,從二次型的角度是A的轉(zhuǎn)置乘A正定。
還有,要有尋根究底的精神。比如,我們討論下秩這個讓考生百感交集的概念。首先要搞清楚秩是什么?線性代數(shù)中有兩個秩:一個矩陣的秩,一個向量組的秩。矩陣的秩是矩陣非零子式的最高階數(shù)。一個矩陣的秩為k意味著什么?要會“翻譯”。“直接翻譯”的結(jié)論是矩陣非零子式的最高階數(shù)為k。只會“直接翻譯”還不足以應(yīng)對考題,還得會“間接翻譯”:該矩陣存在k階非零子式,并且該矩陣不存在k+1階非零子式。再進一步思考:前半句話用秩的語言怎么描述?應(yīng)為r(A)>=k;后半句話用秩的語言怎么描述?應(yīng)為r(A)<=k。再思考:該矩陣不存在k+1階非零子式包含幾種情況?應(yīng)有兩種情況:1)矩陣存在k+1階子式,但k+1階子式全為0;2)矩陣不存在k+1階子式(如矩陣是k階方陣)。這樣關(guān)于矩陣的秩的概念才理解到位了,但還需多做題才能達到熟練。
類似地,我們可以對“向量組的秩”這個概念做層層剖析。首先,向量組的秩是向量組的極大線性無關(guān)組所含向量的個數(shù)。什么是極大線性無關(guān)組?顧名思義即個數(shù)最多的線性無關(guān)的子向量組。但是嚴格的數(shù)學定義必不可少。這個地方提到一個問題:有同學對于比較抽象的概念比較頭疼,試圖拋開嚴格的數(shù)學表述,而通過舉例子等方式理解,這樣可以嗎?不行。舉例子確實有助于理解,但代替不了嚴格的數(shù)學表述。其實,定義理解好了,方法就是自然而然的了??忌梢运伎枷嚓P(guān)問題:如極大無關(guān)組是否唯一?如果不唯一,那它們是什么關(guān)系?
還可以繼續(xù)思考矩陣的秩和向量組的秩的關(guān)系。任給一個矩陣A,矩陣可以按列分塊,也可以按行分塊,這樣我們可以得到三個秩——矩陣的秩,矩陣的列向量組的秩和矩陣的行向量組的秩。這三個秩是什么關(guān)系?結(jié)論是相等。這個結(jié)論不需要證明,會用即可。
16.總是感覺概率理解不透徹,不好把握。
劉老師:從考試的角度,大家看看歷年真題就發(fā)現(xiàn)比較明顯的規(guī)律:概率的題型相對固定,哪考大題哪考小題非常清楚。概率??即箢}的地方是:隨機變量函數(shù)的分布,多維分布(邊緣分布和條件分布),矩估計和極大似然估計。其它知識點考小題,如隨機事件與概率,數(shù)字特征等。
從學科的角度,概率的知識結(jié)構(gòu)與線性代數(shù)不同,不是網(wǎng)狀知識結(jié)構(gòu),而是躺倒的樹形結(jié)構(gòu)。第一章隨機事件與概率是基礎(chǔ)知識,在此基礎(chǔ)上可以討論隨機變量,這就是第二章的內(nèi)容。隨機變量之于概率正如矩陣之于線性代數(shù)??忌部梢钥纯纯佳姓骖},數(shù)一、數(shù)三概率考五道題,這五題的第一句話為“設(shè)隨機變量X……”,“設(shè)總體X……”,“設(shè)X1,X2,…,Xn為來自X的簡單隨機樣本”,無論“隨機變量”、“總體”和“樣本”本質(zhì)上都是隨機變量。所以隨機變量的理解至關(guān)重要。討論完隨機變量之后,討論其描述方式。分布即為描述隨機變量的方式。分布包括三種:分布函數(shù)、分布律和概率密度。其中分布函數(shù)是通用的描述工具,適用于所有隨機變量,分布律只針對離散型隨機變量而概率密度只針對連續(xù)型隨機變量。之后討論常見的離散型和連續(xù)性隨機變量,考研范圍內(nèi)需要考生掌握七種常見分布。
介紹完一維隨機變量之后,推廣一下就得到了多維隨機變量。多維分布總體上分成三種:聯(lián)合分布,邊緣分布和條件分布。其中每種分布又細分為分布函數(shù)、分布律和概率密度。只不過條件分布函數(shù)我們不考慮。該章??即箢},??茧S機變量函數(shù)的分布和邊緣分布、條件分布。之后討論隨機變量的獨立性。
分布包含著隨機變量的全部信息,如果只關(guān)心部分信息就要考慮數(shù)字特征了。數(shù)字特征考小題。把公式性質(zhì)記清楚,多練習即可。
大數(shù)定律和中心極限定理是偏理論的內(nèi)容,考試要求不高。
數(shù)理統(tǒng)計是對概率論的應(yīng)用。其中考大題的地方是參數(shù)估計(矩估計和極大似然估計),考小題的點是常用統(tǒng)計量及其數(shù)字特征,三大統(tǒng)計分布,正態(tài)總體條件下統(tǒng)計量的特殊性質(zhì)。
17.經(jīng)常看著會,但一動手就會發(fā)現(xiàn)問題:要么是哪卡住了,要么是做得慢。什么原因,怎么解決?
劉老師:這是考生普遍性的問題??粗鴷f明考生對基本考點、基本方法有一定認識;但一動手就發(fā)現(xiàn)問題多多,說明要么考生理解不到位(考試要求考生對考點理解到一定深度);做得慢,說明不熟練。
那么如何解決呢?我覺得可以在兩方面下功夫:理解和熟練。如果理解不透徹,不到位,可以通過聽課、看書、做題解決;如果已經(jīng)理解了,但不熟練,那只有多練,多做題了。
18.數(shù)一、數(shù)二、數(shù)三,高數(shù)都是大頭,高數(shù)命題有什么規(guī)律嗎?
劉老師:根據(jù)對2014年的真題分析,發(fā)現(xiàn)高數(shù)命題有如下規(guī)律:
1)側(cè)重對數(shù)一、數(shù)三獨有知識的考查。數(shù)一有什么獨有知識?大的模塊有空間解析幾何、多元積分(三重積分、曲線積分和曲面積分);數(shù)三獨有的知識包括經(jīng)濟應(yīng)用和級數(shù)(相對數(shù)二而言)。比如2014年真題中數(shù)一考了切平面方程,斯托克斯公式還有曲面積分;數(shù)三考了邊際收益和冪級數(shù)求和展開。
2)考查考生綜合運用所學知識分析問題、解決問題的能力。說白了就是應(yīng)用題。比方上面提到的數(shù)三的經(jīng)濟應(yīng)用,數(shù)二考到了形心質(zhì)心。前者是導數(shù)的經(jīng)濟應(yīng)用,后者是定積分的幾何應(yīng)用。
3)考點覆蓋較全。這提示考生不要有僥幸心理,不要忽略次要考點,要做全面復(fù)習。這與把握重點是不矛盾的。這里可以把考研政治中的馬克思主義哲學基本原理用過來:全面復(fù)習和把握重點的辯證統(tǒng)一。
19.為什么做題這么重要?多看不也行嗎?
劉老師:我經(jīng)常問同學兩個問題,你也可以試著回答一下這兩個問題。
1)考研數(shù)學是跟高考數(shù)學比較像,還是跟奧數(shù)比較像?多數(shù)同學都認為跟高考數(shù)學像。我也認可這種回答。因為都是標準化測試,考查的也是通性通法。
2)大家都是從高考過來的,有沒有見過這兩種同學:基本不做題,光聽光看,結(jié)果高考數(shù)學考得非常好;不聽課,但自己埋頭做題,結(jié)果高考數(shù)學考得非常理想?多數(shù)同學認為沒見過第一種同學,有第二種同學。我也是這么認為的。道理也不難:考試的形式如果是這樣,監(jiān)考老師坐在那,問:“同學,請你說說中值定理相關(guān)證明這類題的思路”,那么做題確實有點多余,我們的備考改成“坐而論道”就可以了。可是現(xiàn)實是考試的形式是筆試,是“雙規(guī)”——在規(guī)定時間內(nèi),在規(guī)定的地點用筆答題。所以不做題,做題少就不行了。
如果用一句話總結(jié)一下聽課與做題的關(guān)系,我覺得是:做題是取得好成績必要條件,而聽課是非必要條件。那聽課的作用是什么?是幫助考生理解,節(jié)省考生自己總結(jié)方法的時間。
最后,分享一句胡適的名言“功不唐捐”,祝各位考生圓夢2015!
關(guān)于"最后階段,真題的正確打開方式_備考經(jīng)驗_考研幫"有15名研友在考研幫APP發(fā)表了觀點
掃我下載考研幫
最新資料下載
2021考研熱門話題進入論壇
考研幫地方站更多
你可能會關(guān)心:
來考研幫提升效率