考研幫 > 數(shù)學 > 考研真題解析

2020年考研數(shù)學整體評述(蘭州新東方)

  2019年12月22日,坐標蘭州。此刻20考研已經(jīng)落下帷幕,相信經(jīng)過一年的扎實復習,各位應該可以放松一下,彌補這大半年因復習失去的美好時光;等待你們的定是努力過后的慢慢的幸福感。20年的壯士們已經(jīng)凱旋,21年的勇士們是否準備到位,你們的時代已經(jīng)到來。

  考研數(shù)學在14年之后在難度上大致呈現(xiàn)“大小年”的規(guī)律,一般可以理解為奇數(shù)年的題難度較偶數(shù)年要低。但是19年比常規(guī)奇數(shù)年難度要稍高,因此這次考試的整體難度確實也是介于18和19年之間的。同時,從今年的試題看來,考點覆蓋面廣,綜合度高,重點突出,特色鮮明等特點。綜合來看,還是三個方面的把握:“三基”(基本概念,基本原理,基本方法)“計算”和“應用”。

  這個也是近些年來考研數(shù)學在大綱十多年不變的情況下的,逐步尋求漸變的一個過程。例如今年選擇題,高數(shù)考察了無窮小的比較,但是與往年不同的是換了一個變限積分的“外殼”。在導數(shù)定義和多元函數(shù)的可微定義,阿貝爾定理的考察上都說明了考試還是從“三基”出發(fā),都是知識點難度適中,但是靈活性較強,對學生的基本功要求不低。線性代數(shù)涉及到了線性表出,初等變換的考察,并嘗試線性表示與空間直線的關(guān)聯(lián),更加突出數(shù)一的特色,有一定難度。概率論與數(shù)理統(tǒng)計考察了中心極限定理,這個有點意外,但是對于相對冷門的知識點我們只用從原理和意義上把握還是比較簡單的。

  填空題,高等數(shù)學涉及極限,求導,反常積分還有偏導的計算,相對比較常規(guī),考生們平時訓練到位應該問題不大。線性代數(shù)中規(guī)中矩,涉及到了四階行列式的計算,相對容易。概率論考察了協(xié)方差的計算,屬于基本概念的考察。綜合看來,填空題難度相對平緩。

  解答題部分主要綜合考察了計算能力,分析和應用能力,突出綜合度高計算量大的特點。其中高等數(shù)學的二元函數(shù)極值問題,第二類曲線曲面積分的計算,無窮級數(shù)的求和與中值定理的證明,這些都是考生的弱項,得分率不高。第二類曲面積分的難度較大,今年從定義的角度化為二重積分,這就要求考生的基本功扎實。其他題目涉及知識點相對常規(guī),總體看來難度高于2019年。

  2020考研數(shù)學難度上升趨勢較大,試卷整體計算量大,依然延續(xù)了今年來考研數(shù)學計算量大的整體趨勢。試卷結(jié)構(gòu)和題型和以往偶數(shù)年考題類似,如數(shù)學一2016年考研連續(xù)命制兩道線面積分考題,2020年也是如此。其中高數(shù)題考了部分新題給數(shù)學二,結(jié)合數(shù)學二的考試內(nèi)容和特點,考研常常將較為新穎的高數(shù)題優(yōu)先命制給數(shù)學二,除了計算量和新穎的題型之外,常規(guī)考題依然占了大多數(shù),如微分方程考題與反常積分結(jié)合,此類題型在2016年考試中曾重點考察,側(cè)重考察微分方程的應用,還有常規(guī)考題如多元函數(shù)無條件求極值問題,屬于多元函數(shù)微分學??碱}型之一,2018年考察條件極值問題,2019年考察復合函數(shù)求偏導問題,2020考察無條件極值,考生在學習時需要重點把握這些??碱}型,會按年份重復考察,再如無窮級數(shù)中給出遞推公式求數(shù)列通項與級數(shù)求和,此類問題也是無窮級數(shù)??碱}型之一,在2017年考過此類題型。對于邏輯推理類問題,2020年依然考察了中值定理問題,此類問題2019年也有考到,但不能有懈怠心理,重點內(nèi)容會重復考察,所以考生在復習時更要做到全面復習,查漏補缺。

  線性代數(shù)和概率統(tǒng)計考題較為新穎,線性代數(shù)大題考法融合了每年必考知識點,方程組與相似對角化,兩道大題均以二階矩陣為載體,和以往??既A矩陣相比,操作更為簡單,但解題可能會不太習慣,概率統(tǒng)計兩道大題難度較為適中,第一道求分布依然延續(xù)了近年來??嫉幕旌闲碗S機變量,其中第一問求二維隨機變量的分布函數(shù)考法新穎,第二題求最大似然估計和往年考法一樣,其中第一問求概率類似于無記憶性的概率分布,概率統(tǒng)計兩道題都用到了條件概率公式,可見考試中更注重對概率原理和考察和計算。

  那么基礎(chǔ)今年的考試情況,21考生又該如何備考呢?我們從四個方面給大家提供一些備考建議:

  第一:突出數(shù)一數(shù)二數(shù)三各自特點

  這也是近些年來考研數(shù)學在大綱十一年不變的情況下,逐步尋求的漸變過程。例如,2020數(shù)學一,第16題和第18題考察了曲線曲面積分。數(shù)學二以及數(shù)學三也有類似的體現(xiàn)。因此,2021年備考的學生應該在復習完公共部分之后,重視各自數(shù)學專題知識,加強專題內(nèi)容的復習。

  第二:重視基本理論、基礎(chǔ)方法

  萬丈高樓平地起,對“三基”的重視每年都在提,可是學生們越是到最后越是不明白“返璞歸真”的道理。數(shù)學不是文科類學科,突擊的效果并不明顯。因此,在盡早著手復習的前提下,落實基本方法、基本理論的掌握,將基礎(chǔ)知識融會貫通,才能對技巧性的方法駕輕就熟。否則,盡管把所有問題都給大家講過了,可是到了考場上,因為基礎(chǔ)不牢相當一部分同學連題目每一個條件暗示的解題信號都讀不出來,更談不上數(shù)學的敏感性了;這就出現(xiàn)了平時課上的講解都能聽懂,參考答案都能看懂,可是換一個題換一個問法就無從下手。

  第三:計算計算計算

  重要事情說三遍,可是就算我在課堂上強調(diào)三十遍也無法讓所有人都聽進去。即使今年常規(guī)題居多,但是計算量依然很大。理科是需要計算的,需要大家扎扎實實把計算做下去。比如代數(shù)里考相似理論,考方程組求解,可能新同學對于這些不是很清楚,沒有關(guān)系,你們要記住這些試卷不管困難年份還是簡單的年份計算量都是很大的。誠然,遇到過很多有天賦的學生,可是依然會出現(xiàn)“眼高手低”的問題。計算問題有二:其一,計算出現(xiàn)低級錯誤,“人有失手,馬有失蹄”有些失誤在所難免,可是只有平時的“事必躬親”才能在考場上大概率減少這種低級失誤;其二,認為自己會算的算不出來或者算錯,這種問題就是沒有本質(zhì)上理解有些問題的計算過程,想當然地認為自己會算。

  第四:應用問題

  應用問題不能簡單的理解為應用題,比如今年數(shù)學二的第20題,考察了微積分中值定理的應用,確實對于微分中值應用的考察一直都是考研富于變化的版塊,比如構(gòu)造函數(shù)等技巧。同時,數(shù)一數(shù)二物理背景的應用問題,比如數(shù)二的12題,數(shù)三經(jīng)濟背景的應用問題,以及共同對于幾何方面應用問題,也都是我們不能掉以輕心的部分。

  總結(jié)一下,一是各有特色,二是加強基礎(chǔ),三是加強計算,四是強調(diào)應用。大家把握好這四點,在2021年的全年復習中貫徹落實下來,一定會有一個好成績。

  還有一點,基于數(shù)學的理科學科特點,大家一定靜下心來復習,切勿浮躁,總結(jié)一下就是數(shù)學不可突擊。今年考題簡單,可能突擊的效果比較明顯,所以在這里提醒同學一下,數(shù)學是突擊不了的,盡管最后我們給大家講到相關(guān)的題型,但是還是要靠自己計算,紙上得來終覺淺,絕知此事要躬行。

  借著2020年的真題解析,希望你們能夠把這一年考研拼搏中的得與失好好總結(jié),帶到下一階段的人生的奮斗中去,一定要把好的東西,正面的東西總結(jié)好,鞏固好,加強好。把做的不對的地方,不好的地方消滅掉。無論如何,人一定要好好地走好下一段的路程。

關(guān)于"最后階段,真題的正確打開方式_備考經(jīng)驗_考研幫"15名研友在考研幫APP發(fā)表了觀點

掃我下載考研幫

最新資料下載

2021考研熱門話題進入論壇

考研幫地方站更多

你可能會關(guān)心:

來考研幫提升效率

× 關(guān)閉