摘要:不僅專業(yè)課需要知識框架,數(shù)學(xué)也是如此。一個優(yōu)秀而全面的知識框架有助于厘清整體的解題思路。下面分享一位師兄精心整理的線代知識點框
作者
雷西兒
摘要:不僅專業(yè)課需要知識框架,數(shù)學(xué)也是如此。一個優(yōu)秀而全面的知識框架有助于厘清整體的解題思路。下面分享一位師兄精心整理的線代知識點框架。
線性代數(shù)知識點框架(一)
線性代數(shù)的學(xué)習(xí)切入點:線性方程組。換言之,可以把線性代數(shù)看作是在研究線性方程組這一對象的過程中建立起來的學(xué)科。
線性方程組的特點:方程是未知數(shù)的一次齊次式,方程組的數(shù)目s和未知數(shù)的個數(shù)n可以相同,也可以不同。
關(guān)于線性方程組的解,有三個問題值得討論:(1)、方程組是否有解,即解的存在性問題;(2)、方程組如何求解,有多少個解;(3)、方程組有不止一個解時,這些不同的解之間有無內(nèi)在聯(lián)系,即解的結(jié)構(gòu)問題。
高斯消元法,最基礎(chǔ)和最直接的求解線性方程組的方法,其中涉及到三種對方程的同解變換:(1)、把某個方程的k倍加到另外一個方程上去;(2)、交換某兩個方程的位置;(3)、用某個常數(shù)k乘以某個方程。我們把這三種變換統(tǒng)稱為線性方程組的初等變換。
任意的線性方程組都可以通過初等變換化為階梯形方程組。
由具體例子可看出,化為階梯形方程組后,就可以依次解出每個未知數(shù)的值,從而求得方程組的解。
對方程組的解起決定性作用的是未知數(shù)的系數(shù)及其相對位置,所以可以把方程組的所有系數(shù)及常數(shù)項按原來的位置提取出來,形成一張表,通過研究這張表,就可以判斷解的情況。我們把這樣一張由若干個數(shù)按某種方式構(gòu)成的表稱為矩陣。
可以用矩陣的形式來表示一個線性方程組,這至少在書寫和表達上都更加簡潔。
系數(shù)矩陣和增廣矩陣。
高斯消元法中對線性方程組的初等變換,就對應(yīng)的是矩陣的初等行變換。階梯形方程組,對應(yīng)的是階梯形矩陣。換言之,任意的線性方程組,都可以通過對其增廣矩陣做初等行變換化為階梯形矩陣,求得解。
階梯形矩陣的特點:左下方的元素全為零,每一行的第一個不為零的元素稱為該行的主元。
對不同的線性方程組的具體求解結(jié)果進行歸納總結(jié)(有唯一解、無解、有無窮多解),再經(jīng)過嚴格證明,可得到關(guān)于線性方程組解的判別定理:首先是通過初等變換將方程組化為階梯形,若得到的階梯形方程組中出現(xiàn)0=d這一項,則方程組無解,若未出現(xiàn)0=d一項,則方程組有解;在方程組有解的情況下,若階梯形的非零行數(shù)目r等于未知量數(shù)目n,方程組有唯一解,若r<n,則方程組有無窮多解。
在利用初等變換得到階梯型后,還可進一步得到最簡形,使用最簡形,最簡形的特點是主元上方的元素也全為零,這對于求解未知量的值更加方便,但代價是之前需要經(jīng)過更多的初等變換。在求解過程中,選擇階梯形還是最簡形,取決于個人習(xí)慣。
常數(shù)項全為零的線性方程稱為齊次方程組,齊次方程組必有零解。
齊次方程組的方程組個數(shù)若小于未知量個數(shù),則方程組一定有非零解。
利用高斯消元法和解的判別定理,以及能夠回答前述的基本問題(1)解的存在性問題和(2)如何求解的問題,這是以線性方程組為出發(fā)點建立起來的最基本理論。
對于n個方程n個未知數(shù)的特殊情形,我們發(fā)現(xiàn)可以利用系數(shù)的某種組合來表示其解,這種按特定規(guī)則表示的系數(shù)組合稱為一個線性方程組(或矩陣)的行列式。行列式的特點:有n!項,每項的符號由角標排列的逆序數(shù)決定,是一個數(shù)。
通過對行列式進行研究,得到了行列式具有的一些性質(zhì)(如交換某兩行其值反號、有兩行對應(yīng)成比例其值為零、可按行展開等等),這些性質(zhì)都有助于我們更方便的計算行列式。
用系數(shù)行列式可以判斷n個方程的n元線性方程組的解的情況,這就是克萊姆法則。
總而言之,可把行列式看作是為了研究方程數(shù)目與未知量數(shù)目相等的特殊情形時引出的一部分內(nèi)容。
線性代數(shù)知識點框架(二)
在利用高斯消元法求解線性方程組的過程中,涉及到一種重要的運算,即把某一行的倍數(shù)加到另一行上,也就是說,為了研究從線性方程組的系數(shù)和常數(shù)項判斷它有沒有解,有多少解的問題,需要定義這樣的運算,這提示我們可以把問題轉(zhuǎn)為直接研究這種對n元有序數(shù)組的數(shù)量乘法和加法運算。
數(shù)域上的n元有序數(shù)組稱為n維向量。設(shè)向量a=(a1,a2,...,an),稱ai是a的第i個分量。
n元有序數(shù)組寫成一行,稱為行向量,同時它也可以寫為一列,稱為列向量。要注意的是,行向量和列向量沒有本質(zhì)區(qū)別,只是元素的寫法不同。
矩陣與向量通過行向量組和列向量組相聯(lián)系。
對給定的向量組,可以定義它的一個線性組合。線性表出定義的是一個向量和另外一組向量之間的相互關(guān)系。
利用矩陣的列向量組,我們可以把一個線性方程組有沒有解的問題轉(zhuǎn)化為一個向量能否由另外一組向量線性表出的問題。同時要注意這個結(jié)論的雙向作用。
從簡單例子(如幾何空間中的三個向量)可以看到,如果一個向量a1能由另外兩個向量a2、a3線性表出,則這三個向量共面,反之則不共面。為了研究向量個數(shù)更多時的類似情況,我們把上述兩種對向量組的描述進行推廣,便可得到線性相關(guān)和線性無關(guān)的定義。
通過一些簡單例子體會線性相關(guān)和線性無關(guān)(零向量一定線性無關(guān)、單個非零向量線性無關(guān)、單位向量組線性無關(guān)等等)。
從多個角度(線性組合角度、線性表出角度、齊次線性方程組角度)體會線性相關(guān)和線性無關(guān)的本質(zhì)。
部分組線性相關(guān),整個向量組線性相關(guān)。向量組線性無關(guān),延伸組線性無關(guān)。
回到線性方程組的解的問題,即一個向量b在什么情況下能由另一個向量組a1,a2,...,an線性表出?如果這個向量組本身是線性無關(guān)的,可通過分析立即得到答案:b,a1,a2,...,an線性相關(guān)。如果這個向量組本身是線性相關(guān)的,則需進一步探討。
任意一個向量組,都可以通過依次減少這個向量組中向量的個數(shù)找到它的一個部分組,這個部分組的特點是:本身線性無關(guān),從向量組的其余向量中任取一個進去,得到的新的向量組都線性相關(guān),我們把這種部分組稱作一個向量組的極大線性無關(guān)組。
如果一個向量組A中的每個向量都能被另一個向量組B線性表出,則稱A能被B線性表出。如果A和B能互相線性表出,稱A和B等價。
一個向量組可能又不止一個極大線性無關(guān)組,但可以確定的是,向量組和它的極大線性無關(guān)組等價,同時由等價的傳遞性可知,任意兩個極大線性無關(guān)組等價。
注意到一個重要事實:一個線性無關(guān)的向量組不能被個數(shù)比它更少的向量組線性表出。這是不難理解的,例如不共面的三個向量(對應(yīng)線性無關(guān))的確不可能由平面內(nèi)的兩個向量組成的向量組線性表出。
一個向量組的任意兩個極大線性無關(guān)組所含的向量個數(shù)相等,我們將這個數(shù)目r稱為向量組的秩。
向量線性無關(guān)的充分必要條件是它的秩等于它所含向量的數(shù)目。等價的向量組有相同的秩。
有了秩的概念以后,我們可以把線性相關(guān)的向量組用它的極大線性無關(guān)組來替換掉,從而得到線性方程組的有解的充分必要條件:若系數(shù)矩陣的列向量組的秩和增廣矩陣的列向量組的秩相等,則有解,若不等,則無解。
向量組的秩是一個自然數(shù),由這個自然數(shù)就可以判斷向量組是線性相關(guān)還是線性無關(guān),由此可見,秩是一個非常深刻而重要的概念,故有必要進一步研究向量組的秩的計算方法。
線性代數(shù)知識點框架(三)
為了求向量組的秩,我們來考慮矩陣。矩陣的列向量組的秩稱為矩陣的列秩,行向量組的秩稱為行秩。
對階梯形矩陣進行考察,發(fā)現(xiàn)階梯形矩陣的行秩等于列秩,并且都等于階梯形的非零行的數(shù)目,并且主元所在的列構(gòu)成列向量組的一個極大線性無關(guān)組。
矩陣的初等行變換不會改變矩陣的行秩,也不會改變矩陣的列秩。
任取一個矩陣A,通過初等行變換將其化成階梯形J,則有:A的行秩=J的行秩=J的列秩=A的列秩,即對任意一個矩陣來說,其行秩和列秩相等,我們統(tǒng)稱為矩陣的秩。
通過初等行變換化矩陣為階梯形,即是一種求矩陣列向量組的極大線性無關(guān)組的方法。
考慮到A的行秩和A的轉(zhuǎn)置的列秩的等同性,則初等列變換也不會改變矩陣的秩??偠灾醯茸儞Q不會改變矩陣的秩。因此如果只需要求矩陣A的秩,而不需要求A的列向量組的極大無關(guān)組時,可以對A既作初等行變換,又作初等列變換,這會給計算帶來方便。
矩陣的秩,同時又可定義為不為零的子式的最高階數(shù)。
滿秩矩陣的行列式不等于零。非滿秩矩陣的行列式必為零。
既然矩陣的秩和矩陣的列秩相同,則可以把線性方程組有解的充分必要條件更加簡單的表達如下:系數(shù)矩陣的秩等于增廣矩陣的秩。另外,有唯一解和有無窮多解的條件也可從秩的角度給出回答:系數(shù)矩陣的秩r等于未知量數(shù)目n,有唯一解,r<n,有無窮多解。
齊次線性方程組的解的結(jié)構(gòu)問題,可以用基礎(chǔ)解系來表示。當齊次線性方程組有非零解時,基礎(chǔ)解系所含向量個數(shù)等于n-r,用基礎(chǔ)解系表示的方程組的解的集合稱為通解。
通過對具體實例進行分析,可以看到求基礎(chǔ)解系的方法還是在于用初等行變換化階梯形。
非齊次線性方程組的解的結(jié)構(gòu),是由對應(yīng)的齊次通解加上一個特解。
線性代數(shù)知識點框架(四)
在之前研究線性方程組的解的過程當中,注意到矩陣及其秩有著重要的地位和應(yīng)用,故還有必要對矩陣及其運算進行專門探討。
矩陣的加法和數(shù)乘,與向量的運算類同。
矩陣的另外一個重要應(yīng)用:線性變換(最典型例子是旋轉(zhuǎn)變換)。即可以把一個矩陣看作是一種線性變換在數(shù)學(xué)上的表述。
矩陣的乘法,反映的是線性變換的疊加。如矩陣A對應(yīng)的是旋轉(zhuǎn)一個角度a,矩陣B對應(yīng)的是旋轉(zhuǎn)一個角度b,則矩陣AB對應(yīng)的是旋轉(zhuǎn)一個角度a+b。
矩陣乘法的特點:若C=AB,則C的第i行、第j列的元素是A的第i行與B的第j列的元素對應(yīng)乘積之和;A的列數(shù)要和B的行數(shù)相同;C的行數(shù)是A的行數(shù),列數(shù)是B的列數(shù)。需要主義的是矩陣乘法不滿足交換律,滿足結(jié)合律。
利用矩陣乘積的寫法,線性方程組可更簡單的表示為:Ax=b。
對于C=AB,還可作如下分析:將左邊的矩陣A寫成列向量組的形式,即意味著C的列向量組能由A的列向量組表示,從而推知C的列秩小于等于A的列秩;將右邊的矩陣B寫成行向量組的形式,即意味著C的行向量組能由B的行向量組表示,從而推知C的行秩小于等于B的行秩,再考慮到矩陣的行秩等于列秩等于矩陣的秩,最終可得到結(jié)論,C的秩小于等于A的秩,也小于等于B的秩,即矩陣乘積的秩總不超過任一個因子的秩。
關(guān)于矩陣乘積的另外一個重要結(jié)論:矩陣乘積的行列式等于各因子的行列式的乘積。
一些特殊的矩陣:單位陣、對角陣、初等矩陣。尤其要注意,初等矩陣是單位陣經(jīng)過一次初等變換得到的矩陣。
每一個初等矩陣對應(yīng)一個初等變換,因為左乘的形式為PA(P為初等矩陣),將A寫成行向量組的形式,PA意味著對A做了一次初等行變換;同理,AP意味著對A做了一次初等列變換,故左乘對應(yīng)行變換,右乘對應(yīng)列變換。
若AB=E,則稱A為可逆矩陣,B是A的逆陣,同樣,這時的B也是可逆矩陣,注意可逆矩陣一定是方陣。
第一種求逆陣的方法:伴隨陣。這種方法的理論依據(jù)是行列式的按行(列)展開。
矩陣可逆,行列式不為零,行(列)向量組線性無關(guān),滿秩,要注意這些結(jié)論之間的充分必要性。
單位陣和初等矩陣都是可逆的。
若矩陣可逆,則一定可以通過初等變換化為單位陣,這是不難理解的,因為初等矩陣滿秩,故最后化成的階梯型(最簡形)中非零行數(shù)目等于行數(shù),主元數(shù)目等于列數(shù),這即是單位陣。進一步,既然可逆矩陣可以通過初等變換化為單位陣,而初等變換對應(yīng)的是初等矩陣,即意味著:可逆矩陣可以通過左(右)乘一系列初等矩陣化為單位陣,換言之可逆矩陣可看作是一系列初等矩陣的乘積,因為單位陣在乘積中可略去。
可逆矩陣作為因子不會改變被乘(無論左乘右乘)的矩陣的秩。
由于可逆矩陣可以看作是一系列初等矩陣的乘積,可以想象,同樣的這一系列初等矩陣作用在單位陣上,結(jié)果是將這個單位陣變?yōu)樵瓉砭仃嚨哪骊?,由此引出求逆陣的第二種方法:初等變換。需要注意的是這個過程中不能混用行列變換,且同樣是左乘對應(yīng)行變換,右乘對應(yīng)列變換。
矩陣分塊,即可把矩陣中的某些行和列的元素看作一個整體,對這些被看作是整體的對象構(gòu)成的新的矩陣,運算法則仍然適用。將矩陣看成一些列行向量組或列向量組的形式,實際也就是一種最常見的對矩陣進行分塊的方式。
關(guān)于"最后階段,真題的正確打開方式_備考經(jīng)驗_考研幫"有15名研友在考研幫APP發(fā)表了觀點
掃我下載考研幫
最新資料下載
2021考研熱門話題進入論壇
考研幫地方站更多
你可能會關(guān)心:
來考研幫提升效率