考研幫 > 數(shù)學(xué) > 復(fù)習(xí)經(jīng)驗(yàn)

如何解線性方程組?

  【摘要】線性代數(shù)是考研數(shù)學(xué)中的難點(diǎn),而線性方程組是線性代數(shù)中的難點(diǎn),為此,下面給大家詳細(xì)解析線性方程組的解法。


 


  線性代數(shù)的學(xué)習(xí)切入點(diǎn):線性方程組。換言之,可以把線性代數(shù)看作是在研究線性方程組這一對(duì)象的過程中建立起來的學(xué)科。線性方程組的特點(diǎn):方程是未知數(shù)的一次齊次式,方程組的數(shù)目s和未知數(shù)的個(gè)數(shù)n可以相同,也可以不同。

  關(guān)于線性方程組的解,有三個(gè)問題值得討論:(1)方程組是否有解,即解的存在性問題;(2)方程組如何求解,有多少個(gè)解;(3)方程組有不止一個(gè)解時(shí),這些不同的解之間有無內(nèi)在聯(lián)系,即解的結(jié)構(gòu)問題。

  高斯消元法是最基礎(chǔ)和最直接的求解線性方程組的方法,其中涉及到三種對(duì)方程的同解變換:(1)把某個(gè)方程的k倍加到另外一個(gè)方程上去;(2)交換某兩個(gè)方程的位置;(3)用某個(gè)常數(shù)k乘以某個(gè)方程。我們把這三種變換統(tǒng)稱為線性方程組的初等變換。

  任意的線性方程組都可以通過初等變換化為階梯形方程組。由具體例子可看出,化為階梯形方程組后,就可以依次解出每個(gè)未知數(shù)的值,從而求得方程組的解。

  對(duì)方程組的解起決定性作用的是未知數(shù)的系數(shù)及其相對(duì)位置,所以可以把方程組的所有系數(shù)及常數(shù)項(xiàng)按原來的位置提取出來,形成一張表,通過研究這張表,就可以判斷解的情況。我們把這樣一張由若干個(gè)數(shù)按某種方式構(gòu)成的表稱為矩陣。
  
  可以用矩陣的形式來表示一個(gè)線性方程組,這至少在書寫和表達(dá)上都更加簡潔。因此我們可以得到線性方程組的三種表達(dá)形式:

 ?。?)一般形式(代數(shù)形式)




  注:系數(shù)矩陣的行數(shù)=方程的個(gè)數(shù);系數(shù)矩陣的列數(shù)=變量的個(gè)數(shù)。

      除了自己的努力,適當(dāng)?shù)耐庠彩呛苤匾呐秪幫幫給會(huì)員送福利啦!不管是全程會(huì)員還是沖刺會(huì)員,都可以免費(fèi)觀看《考前3小時(shí)押題》。什么?你居然還不是會(huì)員?那趕緊加入我們吧。點(diǎn)這里點(diǎn)這里。

  考研不足100天,專業(yè)課如何提升一個(gè)level ?了解更多猛戳
 ?。▽?shí)習(xí)編輯:史若陽)

關(guān)于"最后階段,真題的正確打開方式_備考經(jīng)驗(yàn)_考研幫"15名研友在考研幫APP發(fā)表了觀點(diǎn)

掃我下載考研幫

考研幫地方站更多

你可能會(huì)關(guān)心:

來考研幫提升效率

× 關(guān)閉